Putting the Puzzle Together

WHY

SECME ENGINEERING DESIGN COMPETITIONS

SECME
And The Next Generation Science Standards

Lynda Byrne, SECME National Education Program Manager
SECME's Mission:
SECME's goal is to increase the pool of historically under-represented and under-served students who will be prepared to enter and complete post-secondary studies in science, technology, engineering, and mathematics (STEM), thus creating a diverse and globally competitive workforce.

SECME Program Goals:
SECME programs and student competitions support K-12 teachers as they prepare their students to enter and complete college with a focus on STEM disciplines.
SECME’s 34 Year Legacy:
Connecting students to STEM concepts with team engineering design challenges and STEM research.

Engineering Design Challenges
- Mousetrap Car
- Water Rocketry
- VEX Robotics

STEM Research and Writing
- Internet Science and Technology Fair
- eCYBERMISSION
- Essay

Our teacher training for engineering design competitions allow students to connect to the *purpose*, the *how*, and the *why*, to prepare them for real-world applications.
Next Generation Science Standards and Engineering Design

“...represent a commitment to integrate engineering design into the structure of science education by raising engineering design to the same level as scientific inquiry...”

Why?
The following practices were NOT explicitly included in science standards until now:

Students are now expected to be able to define problems [situations that people wish to change] by:

• specifying criteria and constraints for acceptable solutions
• generating and evaluating multiple solutions
• building and testing prototypes
• optimizing a solution
Engineering Design in NGSS

Many standards in the three disciplinary areas of Life Science, Physical Science, and Earth and Space Science begin with Engineering Practice, and

There are separate standards for engineering design at: K-2, 3-5, 6-8, and 9-12

Engineering Design is seen as BOTH a set of practices AND as a set of core ideas
Standards for engineering design reflect the three component ideas of the Framework

A. **DEFINING and delimiting engineering problems** involves stating the problem to be solved as clearly as possible in terms of criteria for success, and constraints or limits.

B. **DESIGNING SOLUTIONS to engineering problems** begins with generating a number of different possible solutions, then evaluating potential solutions to see which ones best meet the criteria and constraints of the problem.

C. **OPTIMIZING the design solution** involves a process in which solutions are systematically tested and refined and the final design is improved by trading off less important features for those that are more important.

And can be **drilled down** to reflect progress at each grade level
Grades K-2

Drill it Down

DEFINE
Identify situations that people want to change as problems that can be solved through engineering

DESIGN SOLUTIONS
Convey possible solutions through visual or physical representations

OPTIMIZE
Compare solutions, test them, and evaluate each

- Introduces students to “problems” as situations that people want to change
- Emphasis is on thinking through the needs or goals that need to be met, and which solutions best meet those needs.
Grades 3-5
Drill it Down

DEFINE
Specify criteria and constraints that a possible solution to simple problem must meet

DESIGN SOLUTIONS
Research and explore multiple possible solutions

OPTIMIZE
Improve a solution based on results of simple tests, including failure points

- Engages students in more formalized problem solving
- Students research and consider multiple possible solutions to a problem
- Generating and testing solutions become more rigorous

[Image of a circular diagram with arrows connecting the three sections: Define, Design Solutions, Optimize]
Grades 6-8
Drill it Down

DEFINE
Attend to precision of criteria and constraints and considerations likely to limit possible solutions

DESIGN SOLUTIONS
Combine parts of different solutions to create new solutions

OPTIMIZE
Use systematic processes to iteratively test and refine a solution

- Learns to sharpen the focus of problems
- Identify elements of different solutions and combine them to create new solutions
- Use systematic methods to compare different solutions, test, and revise multiple times
Grades 9-12
Drill it Down

- Complex problems that include social and global significance
- Quantify criteria and constraints
- Emphasis is on identifying the best solution to a problem
- Expected to use mathematics and/or computer simulations to test solutions under different conditions
SECME
Drill it Down

DEFINE
Review SECME’s *Competition Guidelines* to determine criteria and constraints for current year challenge

DESIGN SOLUTIONS
Hypothesize multiple design solutions, calculating how different designs will produce the best product

OPTIMIZE
Systematically build, test, and evaluate until satisfied with design solution; present findings
Performance Expectations That Incorporate Engineering Design Practices

<table>
<thead>
<tr>
<th>Grade</th>
<th>Physical Science</th>
<th>Life Science</th>
<th>Earth and Space Science</th>
<th>Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>K-PS2-2</td>
<td></td>
<td>K-ESS3-2</td>
<td>K-2-ETS1-1</td>
</tr>
<tr>
<td></td>
<td>K-PS3-2</td>
<td></td>
<td>K-ESS3-3</td>
<td>K-2-ETS1-2</td>
</tr>
<tr>
<td>1</td>
<td>1-PS4-4</td>
<td>1-LS1-1</td>
<td></td>
<td>K-2-ETS1-3</td>
</tr>
<tr>
<td>2</td>
<td>2-PSI-2</td>
<td>2-LS2-2</td>
<td>2-ESS2-1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3-PS2-4</td>
<td>3-LS4-4</td>
<td>3-ESS3-1</td>
<td>3-5-ETS1-1</td>
</tr>
<tr>
<td>4</td>
<td>4-PS3-4</td>
<td></td>
<td>4-ESS3-2</td>
<td>3-5-ETS1-2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>3-5-ETS1-3</td>
</tr>
<tr>
<td>6-8</td>
<td>MS-PS1-6</td>
<td>MS-LS2-5</td>
<td></td>
<td>MS-ETS1-1</td>
</tr>
<tr>
<td></td>
<td>MS-PS2-1</td>
<td></td>
<td></td>
<td>MS-ETS1-2</td>
</tr>
<tr>
<td></td>
<td>MS-PS3-3</td>
<td></td>
<td></td>
<td>MS-ETS1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MS-ETS1-4</td>
</tr>
<tr>
<td>9-12</td>
<td>HS-PS1-6</td>
<td>HS-LS2-7</td>
<td>HS-ESS3-2</td>
<td>HS-ETS1-1</td>
</tr>
<tr>
<td></td>
<td>SH-PS2-3</td>
<td></td>
<td>HS-ESS3-4</td>
<td>HS-ETS1-2</td>
</tr>
<tr>
<td></td>
<td>HS-PS2-6</td>
<td></td>
<td></td>
<td>HS-ETS1-3</td>
</tr>
<tr>
<td></td>
<td>HS-PS3-3</td>
<td></td>
<td></td>
<td>HS-ETS1-4</td>
</tr>
<tr>
<td></td>
<td>HS-PS4-5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dimension 1: Science & Engineering Practices

1. Ask questions (for science) and define problems (for engineering)
2. Develop and use models
3. Plan and carry out investigations
4. Analyze and interpret data
5. Use mathematics and computational thinking
6. Construct explanations (for science) and design solutions (for engineering)
7. Engage in argument from evidence
8. Obtain, evaluate, and communicate information
<table>
<thead>
<tr>
<th>NGSS Scientific and Engineering Practices</th>
<th>SECME Interactive Design Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ask questions (for science) and define problems (for engineering)</td>
<td>1. Choose SECME Engineering Design Competition</td>
</tr>
<tr>
<td>2. Develop and use models</td>
<td>2. Research, brainstorm, and create models to aid in selecting an approach</td>
</tr>
<tr>
<td>3. Plan and carry out investigations</td>
<td>3. Investigate possible solutions to see which one will best solve the problem (Record data)</td>
</tr>
<tr>
<td>4. Analyze and interpret data</td>
<td>4. Analyze investigation data (via graphical representation, visualization, and statistical analysis) to choose the best solution</td>
</tr>
<tr>
<td>5. Use mathematics and computational thinking</td>
<td>5. Make quantitative predictions using mathematical representations and apply math concepts (ratio, rate, functions, etc.)</td>
</tr>
<tr>
<td>6. Construct explanations (for science) and design solutions (for engineering)</td>
<td>6. Build/construct multiple prototypes for testing and analysis</td>
</tr>
<tr>
<td>7. Engage in argument from evidence</td>
<td>7. Test solution(s)</td>
</tr>
<tr>
<td>8. Obtain, evaluate, and communicate information</td>
<td>8. Write technical report; Create technical drawing; Prepare for team interview</td>
</tr>
</tbody>
</table>
Sample Alignment

SECME Engineering Design: Mousetrap Car

Cars with Gears
Discuss Limitations
What are the limitation with the use of a lever?
What are the limitations with the use of pulleys?
What are the limitations with the use of gears?
Sample Alignment
SECME Engineering Design: Mousetrap Car
SECME National Competitions

Challenge students to connect to the **purpose**, the **how**, and the **why**

Example:

SECME students teams don’t just race a car

Engineering Design Mousetrap Car Competition requires

- Car Construction and Run
- Technical Drawing
- Technical Report
- Team Interview with Judges (MS, HS)
Inclusion of engineering with science has major implications for non-dominant student groups.

Focus on engineering:
- is inclusive of students who may have traditionally been marginalized in the science classroom or experienced science as not being relevant to their lives or future

- asking questions and solving meaningful problems in local contexts (local needs), diverse students:
 - deepen their science knowledge
 - come to view science as relevant to their lives and future
 - and engage in science in socially relevant and transformative ways
opportunities for “innovation” and creativity at the K-12 level is critical to undertaking the world’s challenges.

exposure to engineering activities (robotics, invention competitions) can spark interest in the study of STEM or future careers.

Early engagement is particularly important for students who have traditionally not considered science as a possible career choice, including females and minority students.
References

